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We give detailed description of the transport spin current in the chiral helimagnet. Under the static magnetic
field applied perpendicular to the helical axis, the magnetic kink crystal �chiral soliton lattice� is formed. Once
the kink crystal begins to move under the Galilean boost, the spin-density accumulation occurs inside each
kink and there emerges periodic arrays of the induced magnetic dipoles carrying the transport spin current. The
coherent motion of the kink crystal dynamically generates the spontaneous demagnetization field. To describe
the kink crystal motion, we took account of not only the tangential � fluctuations but the longitudinal �
fluctuations around the helimagnetic configuration. Based on the collective coordinate method and the Dirac
canonical formulation for the singular Lagrangian system, we derived the closed formulas for the mass, spin
current, and induced magnetic-dipole moment accompanied with the kink crystal motion. To materialize the
theoretical model presented here, symmetry-adapted material synthesis would be required, where the interplay
of crystallographic and magnetic chirality plays a key role there.
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I. INTRODUCTION

The core problem in the multidisciplinary field of spin-
tronics is how to create, transport, and manipulate spin
currents.1 The key notions include the current-driven spin-
transfer torque2–6 and resultant force acting on a domain wall
�DW� �Refs. 7 and 8� in metallic ferromagnetic/nonmagnetic
multilayers, the dissipationless spin currents in paramagnetic
spin-orbit coupled systems,9–11 and magnon transport in tex-
tured magnetic structures.12 A fundamental query behind the
issue is how to describe transport spin currents.13 To make
clear the meaning of the spin currents, we need to note that
the spin can appear in the macroscopic Maxwell equations
only in the form of spin magnetization. In this viewpoint, the
spin current is understood as the deviation of the spin pro-
jection from its equilibrium value. An emergence of the co-
herent collective transport in nonequilibrium state is then a
manifestation of the dynamical off-diagonal long-range order
�DODLRO�.14,15

On the other hand, the physical currents are classified into
two categories, i.e., the gauge current originating from the
gauge invariance and the inertial current originating from the
Galilean invariance. The electric current is the gauge current,
where the electric charge is coupled to the electromagnetic
U�1� gauge field. The electromagnetic field is a physical
gauge field that has its own dynamics, i.e., we know the
electromagnetic-field energy. Then, the charge current ji and
the charge density � are related via the continuity equation
�� /�t=−�ji /�xi. On the other hand, a typical example of the
inertial current is the momentum current in a classical ideal
fluid, where the momentum current �ij satisfies the continu-
ity equation, ���vi� /�t=−��ij /�xj, and given by �ij = P�ij
+�viv j with P being equilibrium pressure.16 The nonequilib-
rium current is described by �viv j. In the spin current prob-
lem, at present, we have no known gauge field directly
coupled to the spin current. Therefore, a promising candidate
is the inertial current of the magnetization.

Historically, Döring17 pointed out that the longitudinal
component of the slanted magnetic moment inside the Bloch

DW emerges as a consequence of translational motion of the
DW. An additional magnetic energy associated with the re-
sultant demagnetization field is interpreted as the kinetic en-
ergy of the wall. This idea was simplified by Becker18 and
Kittel.19 Recent progress of material synthesis sheds new
light on this problem. In a series of magnets belonging to
chiral space group without any rotoinversion symmetry ele-
ments, the crystallographic chirality gives rise to the asym-
metric Dzyaloshinskii interaction that stabilizes either left-
handed or right-handed chiral magnetic structures.20 In these
chiral helimagnets, magnetic field applied perpendicular to
the helical axis stabilizes a periodic array of DWs with defi-
nite spin chirality forming kink crystal or chiral soliton
lattice.21

We recently proposed a new way to generate a spin cur-
rent in the chiral helimagnets with magnetic field applied in
the plain of rotation of magnetization.22 The mechanism is
quite analogous to the Döring-Becker-Kittel mechanism.17–19

We showed that the periodic spin accumulation occurs as a
dynamical effect caused by the moving magnetic kink crystal
�chiral soliton lattice� formed in the chiral helimagnet under
the static magnetic field applied perpendicular to the helical
axis. The current is inertial flow triggered by the Galilean
boost of the kink crystal. An emergence of the transport mag-
netic currents is then a consequence of the dynamical off-
diagonal long-range order along the helical axis.

In this paper, we give an extension of the results touched
on in Ref. 22. In Sec. II, we give an overview of basic prop-
erties of the chiral magnets that materialize the theoretical
model considered in this paper. In Sec. III, we present stan-
dard description of the kink crystal formation and the vibra-
tional modes around the kink crystal state. In Sec. IV, we
apply the collective coordinate method to the moving kink
crystal that makes clear the physical meaning of the mass
and the magnon current carried by the moving system. In
Sec. V, we perform quantitative estimates of the mass, mag-
netic current, and net magnetization induced by the move-
ment. In Sec. VI, we discuss issues closely related to the
present problem, including the background spin current
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problem, spin supercurrent in the superfluid 3He, and experi-
mental aspects of our effects. Finally, we summarize the pa-
per in Sec. VII.

II. CHIRAL HELIMAGNET

In this section, we briefly review basic properties of chiral
helimagnets that materialize our theoretical model. Recent
progress of material synthesis promotes systematic re-
searches on a series of magnets belonging to chiral space
group without any rotoinversion symmetry elements.21 In the
chiral magnets, the crystallographic chirality possibly gives
rise to the asymmetric Dzyaloshinskii interaction that stabi-
lizes the chiral helimagnetic structure, where either left-
handed or right-handed magnetic chiral helix is formed.20 As
we will see, in the chiral helimagnets, magnetic field applied
perpendicular to the helical axis stabilizes a periodic array of
DWs with definite spin chirality forming kink crystal or chi-
ral soliton lattice.21

The chiral helimagnetic structure is an incommensurate
�IC� magnetic structure with a single propagation vector k0
= �0,0 ,k�. The space group G consists of the elements �gi�.
Among them, some elements leave the propagation vector
k0= �0,0 ,k� invariant, i.e., these elements form the little
group Gk0

.23,24 The magnetic representation24 �mag is written
as �mag=�perm � �axial, where �perm and �axial represent the
Wyckoff permutation representation and the axial-vector rep-
resentation, respectively. Then, �mag is decomposed into the
nonzero irreducible representations of Gk0

. The incommen-
surate magnetic structure is determined by a “magnetic basis
frame” of an axial-vector space and the propagation vector k.
In specific magnetic ion, the decomposition becomes �mag
=�ini�i, where �i is the irreducible representations of Gk0

.
Then, we have two cases leading to the chiral helimagnetic
magnetic structure. �Case I� The magnetic moments are de-
scribed by two independent one-dimensional representations
that form two-dimensional basis frames or �Case II� the mag-
netic moments are described by single two-dimensional rep-
resentations that form two-dimensional basis frames. In these
cases, the symmetry condition allows the chiral helimagnetic
structure to be realized. Then, the structure is stabilized by
the generalized Dzyaloshinskii interaction. The generalized
Dzyaloshinskii interaction means symmetry-adapted anti-
symmetric exchange interaction not restricted to conven-
tional Dzyaloshinskii-Moriya �DM� interaction caused by the
on-site spin-orbit coupling and the intersite exchange inter-
actions. The presence of this term is justified by the existence
of the Lifshitz invariant25 for the little group Gk0

.
Among the inorganic chiral helimagnets, the best known

example is the metallic helimagnet MnSi �Tc�30 K� that
belongs to the cubic space group P213 �a=4.558 Å�.26 The
metallic helimagnet Cr1/3NbS2 �Tc�120 K� belongs to the
hexagonal space group P6322 �a=5.75 Å, c=12.12 Å�.27

The insulating copper metaborate CuB2O4 �Tc�10 K� has a
larger unit cell and belongs to the tetragonal space group

I4̄2d �a=11.48 Å, c=5.620 Å�.28,29 As examples of
molecular-based magnets, the structurally characterized
green needle, �Cr�CN�6	�Mn�S or R�-pnH�H2O�	H2O �Tc

�38 K�, belongs to the orthorhombic space group P212121
�a=7.628 Å, b=14.51 Å, c=14.93 Å�. The yellow needle,
K0.4�Cr�CN�6	�Mn�S�-pn	�S�-pnH0.6: ��S�-pn= �S�-1 ,2-diam-
inopropane	 �Tc�53 K�, belongs to the hexagonal space
group P61 �a=14.77 Å , c=17.57 Å�.21 From the
symmetry-based viewpoints, these space groups are all eli-
gible to realize the chiral helimagnetic order.

III. KINK CRYSTAL AND VIBRATIONAL MODES
AROUND THE KINK-CRYSTAL STATE

As shown in Fig. 1, we consider a system of the chiral
helimagnetic chains described by the model Hamiltonian,

H = − J�

i,j�

Si · S j + D · �

i,j�

Si � S j − H̃ · �
i

Si, �1�

where the first term represents the ferromagnetic coupling
with the strength J�0 between the nearest-neighbor spins Si
and S j. The second term represents the parity-violating
Dzyaloshinskii interaction between the nearest neighbors,
characterized by the monoaxial vector D=Dêx along a cer-
tain crystallographic chiral axis �taken as the x axis�. The
third term is the Zeeman coupling with the magnetic field

H̃=g	BHêy applied perpendicular to the chiral axis. When
we treat model Hamiltonian �1�, we implicitly assume that
the magnetic atoms form a cubic lattice and the uniform
ferromagnetic coupling exists between the adjacent chains to
stabilize the long-range order. Then, Hamiltonian �1� is in-
terpreted as a quasi-one-dimensional model based on the in-
terchain mean-field picture.30

When H=0, the long-period incommensurate helimag-
netic structure is stabilized with the definite chirality �left
handed or right handed� fixed by the direction of the mono-
axial D-vector. Hamiltonian �1� is the same as the model
treated by Liu31 except that we ignore the single-ion aniso-
tropy energy. Once we take into account the easy-axis-type
anisotropy term, −K�i�Si

x�2, the mean-field ground-state con-
figuration becomes either the chiral helimagnet for K

D2 /J or the Ising ferromagnet for K�D2 /J. In this paper,
we assume K=0 and left an effect of K for a future study.

Taking the semiclassical parametrization of Heisen-
berg spins in the continuum limit S�x�=S�cos ��x� ,
sin ��x�cos ��x� , sin ��x�sin ��x�	 by using the slowly vary-
ing polar angles ��x� and ��x� �see Fig. 2�a�	, the Hamil-
tonian acquires the form

x

FIG. 1. Schematic view of the model chiral helimagnet consid-
ered here.
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H���x�,��x�	 = JS2�
0

L

dx
1

2
��x��x��2 +

1

2
sin2 ���x��x��2

− q0 sin2 ��x��x��x� − m2 sin ��x�cos ��x�� ,

�2�

where m=�H̃ /JS and L denotes the linear dimension of the
system. From now on, all distances are measured in the lat-
tice unit a0. The helical pitch in the zero field �m=0� is given
by q0=D /J.

The magnetic kink crystal phase is described by the sta-
tionary soliton solution minimizing H, �=� /2, and
cos��0�x� /2	=sn�mx /� ,�	, where sn is the Jacobi elliptic
function with the elliptic modulus � �0
�2
1�.25,32 This
solution corresponds to a periodic regular array of the mag-
netic kinks with the “topological charge” density �x�0�x�
=2 m

� dn� m
� x ,�� as shown in Figs. 2�b� and 2�c�. The elliptic

modulus � is found from the minimization of energy per unit
length that yields � /m=4E��� /�q0.25 The period of the soli-
ton lattice is given by

�kink =
2�K���

m
=

8K���E���
�q0

, �3�

where K��� and E��� denote the elliptic integrals of the first
and second kinds, respectively. The period increases from
2� /q0 to infinity as � increases from zero to unity. In the
limit of �→0, the sn function approaches sin and � /m
→2 /q0, i.e., �0�x�=q0x as it should be in the case of zero
field.

In Hamiltonian �2�, the exchange processes favor the IC
chiral helimagnetic order, while the Zeeman term favors the
commensurate �C� phase. The C-IC transition occurs at �
=1 provided E�1�=1, and the critical value of m is given by

�q0 /4mc=1.33–35 The critical-field strength H̃c is determined

from �H̃ / H̃c=� /E���.
Next, we consider the fluctuations around the kink crystal

state. The studies of collective excitations in the system have
been focused on the phasons �
 mode� presenting bending

waves of domain walls of the soliton lattice.36 In our analysis
we are interested in the � modes also. We derive the spec-
trum of elementary excitations holding the scheme outlined
in Ref. 37.

In what follows, it is convenient to work with the dimen-
sionless coordinate,

x̄ =
m

�
x = 2K���

x

�kink
=

�

4E���
q0x . �4�

We introduce L̄=mL /� and q̄0=�q0 /m, and rewrite Hamil-
tonian �2� as

H = JS2m

�
H = JS22K���

�kink
H , �5�

where the dimensionless Hamiltonian H is defined by

H = �
0

L̄
dx̄
1

2
��x̄��x̄��2 +

1

2
sin2 ��x̄���x��x̄��2

− q̄0 sin2 ��x��x̄��x̄� − �2 sin ��x̄�cos ��x̄�� . �6�

As the magnetic field increases from H=0 to H=Hc, the
parameter q̄0=4E��� /� monotonously decreases from q̄0=2
to q̄0=4 /��1.273. The fluctuations consist of the vibra-
tional �phonon� modes and the translational mode, which are
separately treated. In this section, we examine the phonon
modes. We write

��x̄� = �0�x̄� + v�x̄�, ��x̄� =
�

2
+ u�x̄� �7�

and expand Eq. �6� up to u2 and v2. Then we have H
=�0

L̄dx̄�H0+Hu+Hv+Hint�+O�u2 ,v2�, where H0 corre-
sponds to the stationary solution. The interaction part con-
tains −u2��x̄v�2 /2 and u4 terms that are neglected here. The

vibrational term V=�0
L̄dx�Hu+Hv� is given by Hu=uLu

ˆ u and

Hv=vLv
ˆ v, where the differential operators, Lv

ˆ and Lu
ˆ , are

defined by

Lv
ˆ = −

1

2
�x̄

2 +
1

2
�2 cos �0,

Lu
ˆ = −

1

2
�x̄

2 +
1

2
�2 cos �0 +

1

2
��x̄�2. �8�

The “gap function” reads as

��x̄� = �2q̄0��x̄�0� − ��x̄�0�2 = 2�q̄0dn�x̄,�� − dn2�x̄,�� ,

�9�

where the relation �x̄�0=2dn�x̄ ,�� was used. The minimum
and maximum values of the gap are given by

�max = q̄0, �min = ��K� = 2����q̄0 − ��, �10�

respectively, where ��=�1−�2 is the complementary modu-
lus. We see that the gap closes at the C-IC transition. In Fig.
3�a�, we show the spatial variation of the gap function. The �
dependence of the minimum gap is shown in Fig. 3�b�. For

+2π

( )xφ

x

(a)

x

θ

y

z

φ

(b)

(c)

x
z

y

FIG. 2. �a� Polar coordinates in the laboratory frame. �b� For-
mation of the magnetic kink crystal in the chiral helimagnets under
the transverse magnetic field and �c� concomitant phase modulation.
In �b�, we depict a linear array of the spins along one chiral axis that
is ferromagnetically coupled to the neighboring arrays.
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small �, we have �max�2−�2 /2−3�4 /32 and �min�2
−�2 /2−7�4 /32. Therefore, �max /�min�1 and it is appropri-
ate to approximate ��x̄��2 for the case of weak field. This
approximation amounts to approximating dn�x̄ ,���1.

If we considered only the tangential � mode, our problem
reduces to the case first investigated by Sutherland.38 Fur-
thermore, the � mode is fully studied in the context of the
chiral helimagnet.37,39 However, to realize the longitudinal
magnetic current, as we will see, it is essential to include into
consideration the � mode. Even of zero field, �=0, the �
mode acquires the energy gap �JS2��m /��q̄0=DS2.22 The �
gap directly originates from the Dzyaloshinskii interaction
that plays a role of easy-plane anisotropy. On the other hand,
the � mode is the massless Goldstone mode corresponding to
rigid rotation of the whole helix around the helical axis.40

Even after switching the perpendicular field, the � mode ��
mode� remains to be massive �massless�.

The mode expansion is

v�x̄� = �
�

��v��x̄� , u�x̄� = �
�

��u��x̄� , �11�

where the orthonormal basis, v��x̄� and u��x̄�, is determined
through the eigenvalue equations,

Lv
ˆ v��x̄� = ��v��x̄�, Lu

ˆ u��x̄� = ��u��x̄� , �12�

with a mode index �. The vibrational part is now given by

V = �
0

L̄
dx̄�Hu + Hv� = �

�

�����
2 + ����

2� . �13�

In explicit form eigensystem �12� presents the Schrödinger-
type equations,

d2v��x̄�
dx̄2 = �2�2sn2�x̄,�� − ��2 + 2���	v��x̄� , �14�

d2u��x̄�
dx̄2 = �2�2sn2�x̄,�� − ��2 − 4q̄0 + 4 + 2���	u��x̄� .

�15�

In Eq. �15� we consider the case of weak field corresponding
to small � that admit dn�x̄ ,���1. In Appendix A, we present
the general scheme to treat the periodic potential having the
spatial period 2K and show that this approximation does not
affect qualitative result presented below. Now, both Eqs. �14�
and �15� reduce to the Jacobi form of the Lamé equation,41

and their solutions have been discussed by us previously22

�see also Appendix B�. The analysis shows that both the �
and � modes consist of two bands,38 i.e.,

Acoustic � mode: ��
�−� = ��a

�−� =
��
�2

�sn�a,���� ,

Optical � mode: ��
�+� = ��a

�+� =
1

�2�sn�a,����
, �16�

Acoustic � mode: ��
�−� = ��a

�−�

=�2q̄0 − 2 +
��2

2
sn2�a,��� ,

Optical � mode: ��
�+� = ��a

�+� =�2q̄0 − 2 +
1

2sn2�a,���
,

�17�

where the real parameter a runs over K�
a�K�. Here, K�
means the complete elliptic integral of the first kind with the
complementary modulus ��=�1−�2.

By imposing the periodic boundary condition, the quasi-
momentum �Floquet index� is introduced for the acoustic,

Qa
�−� =

�a

2KK�
+ Z�a,��� �18�

�0� �Qa
�−���� /2K�, and the optic,

Qa
�+� =

�a

2KK�
+ Z�a,��� + dn�a,���

cn�a,���
sn�a,���

�19�

�� /2K� �Qa
�−���, branches, respectively, where Z denotes the

Jacobi zeta function.41 The representation was given by
Izyumov and Laptev37 and differs from a conventional
representation.38,41

A dispersion relation is given by � as a function of Flo-
quet index Q. We show the excitation spectra �� and �� in
Fig. 4. Because 4 /�
 q̄0�2, the energy gap of the � mode,

−3 −2 −1 0 1 2 3

1.0
(a)

(b)

0.0 0. 2 0. 4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

FIG. 3. �a� Spatial variation of the gap function ��x̄� for the �

mode. �b� The minimum gap �min is shown as a function of H̃ / H̃c.
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���a=0�=�2q̄0−2, has a range �8 /�−2
���2. The gap
has a maximum value ��=�2 at zero field ��=0� and mo-
notonously decreases as the field increases up to the critical
field ��=1�. The normalized wave function at the bottom of
the acoustic band is

��=0�x̄� =� K���

E���L̄
dn�x̄,�� =

1

2� K���

E���L̄
�x̄�0�x̄� .

�20�

In Sec. IV we demonstrate that ��=0�x̄� exactly corresponds
to the zero translational mode.

IV. GALILEAN BOOST OF THE KINK CRYSTAL

In Sec. III, we determined the phonon modes. Next we
consider the translational mode. The translational symmetry
holds after the kink formation and gives rise to the Goldstone
mode, i.e., zero mode �x̄�0�x̄�=2dn �x̄ ,��. Although the
Gaussian fluctuations around the kink crystal state are as-
sumed to be small, this is not true for the zero mode which
describes fluctuations without damping. Then, the center-of-
mass coordinate is elevated to the status of the dynamical
variable X�t� and the phonon modes are orthogonal to the
zero mode. To describe this situation, we follow the collec-
tive coordinate method.42,43

At first, we construct the Lagrangian for the kink crystal
system. We make use of the coherent states of spins,

�ni� = exp�i�i� · S	�S,S� , �21�

where

� =
n0 � ni

�n0 � ni�
, �22�

with ni= �cos �i , sin �i cos �i , sin �i sin �i� and n0= �1,0 ,0�.
Si�i=x ,y ,z� are the generators of SU�2� in the spin-S repre-

sentation and satisfy �S� ,S�	= i����S�. The highest weight
state �S ,S� satisfies Si

x�S ,S�=S�S ,S� and S2�S ,S�=S�S
+1��S ,S�. The states �ni� form an overcomplete set and give

ni�S�ni�=Sni. Using this representation, the Berry phase
contribution to the real-time Lagrangian per unit area is writ-
ten as

LBerry = �S�
i

�cos �i − 1��t�i = �S
�

m
�

0

L̄
dx̄�cos � − 1��t� ,

�23�

where we took the continuum limit. Now, we construct the
Lagrangian,

L = c0�
0

L̄
dx̄�cos � − 1��t� − c1V , �24�

with the coefficients

c0 = �S
�

m
, c1 = JS2m

�
, �25�

and expand � and � in the form,

��x̄,t� = �0�x̄ − X̄�t�	 + �
��0

�

���t�v��x̄ − X̄�t�	 , �26�

��x̄,t� = �/2 + �
��0

�

���t�u��x̄ − X̄�t�	 . �27�

In the expansion of the � mode, it is not necessary to exclude
�=0, since the � mode does not contain zero mode. This
description amounts to using the curvilinear basis,
�X ,�� ,���, in functional space and taking the generalized

coordinates q1= X̄, q2�=��, and q3�=��. Since the zero
mode �x̄�0�x̄� is orthogonal to the phonon modes, we have

�
0

L̄
dx̄

��0�x̄�
� x̄

v��x̄� = 0 �28�

for ��0. Noting that

�̇ = − q̇1��x̄�0 + �
�

�

q2��x̄v�� + �
�

�

q̇2�v�

and

1 − cos � � 1 + �
�

�

q3�u�,

and plugging these expressions into Lagrangian �24�, we ob-
tain

L = − c0��
�

J�q̇2� − q̇1�
�

K�q3�

+ �
�,�

M�,�q3�q̇2�� − c1V , �29�

where higher order terms O�q3� are dropped. The overlap
coefficients are given by

(a)

(b)

FIG. 4. The energy dispersions of the eigenmodes for �a� the
tangential � fluctuation ���� and �b� the longitudinal � fluctuations
����.
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J� = �
0

L̄
dx̄v��x̄� ,

K� = �
0

L̄
dx̄

��0�x̄�
� x̄

u��x̄� ,

M�� = �
0

L̄
dx̄u��x̄�v��x̄� . �30�

Lagrangian �28� is singular because it does not contain
any term of the form q̇iq̇j, and the rank of the Hessian matrix
��2L /�q̇i� q̇j� becomes zero. This means that there are no
primary expressible velocities. Therefore we need to con-
struct the Hamiltonian by using the Dirac algorithm for the
constrained Hamiltonian systems.44,45 The details of the
treatment have been given in our previous treatment �see also
Appendix C�. The final result is

�� = 0, �� =
c0

2c1

K�

��

Ẋ̄ , �31�

which means that only finite amplitude of the � mode,

u�x̄� = �
�

��u��x̄� , �32�

appears when the collective velocity Ẋ is finite. This is ex-
actly the manifestation of the ODLRO. In other words, the
u�x̄� field is interpreted as the demagnetization field that
drives the inertial motion of the kink. Using Eq. �31�, we
reach the final form of the physical Hamiltonian,

Hph = c1�
�

����
2 =

c0
2

4c1
�
�

K�
2

��

Ẋ̄2 =
1

2
MẊ2, �33�

where the inertial mass of the kink crystal is introduced,

M =
c0

2

2c1
�m

�
�2

�
�

K�
2

��

. �34�

Physical Hamiltonian �33� describes the inertial motion of
the kink crystal.

The linear momentum per unit area carried by the kink

crystal may be presented in the form22 P=2��SQ+MẊ,
where the topological charge

Q =
1

2�
��0�L̄� − �0�0�	 �35�

is introduced. Apparently, the transverse magnetic field in-
creases a period of the kink crystal lattice and diminishes the
topological charge Q and therefore it affects only the back-
ground linear momentum �see discussion in Sec. VI�. The
physical momentum related with a mass transport due to the
excitations around the kink crystal state is generated by the
steady movement.

The “superfluid magnon current” transferred by the �
fluctuations is determined through the definition of the accu-
mulated magnon density15 �s in the total magnon density
N=g	BS�1−cos ��=�0+�s, where the superfluid part �s

=−g	BS cos � is conjugated with the magnon time-even cur-
rent carried by the � fluctuations,

jx�x̄� = g	BS
c0

2c1

m

�
Ẋ2�

�

K�

��

u��x̄� , �36�

via a continuity equation.22 The important point is that the
only massive � mode can carry the longitudinal magnon cur-
rent as a manifestation of ordering in nonequilibrium state,
i.e., dynamical off-diagonal long-range order.46

The net magnetization �magnetic-dipole moment� induced
by the movement is

m�x̄� � − g	BSu�x̄� = − g	BS
c0

2c1

m

�
Ẋ�

�

K�

��

u��x̄� . �37�

The minus sign means that the net magnetization produces a
demagnetization field.

V. QUANTITATIVE ESTIMATES

To compute the mass M, the spin current jx, and the
magnetic-dipole moment m, we consider an array of parallel
chains described by model �1�, where a number of chains per
unit area is narea=1 /a0

2. In the case of the molecular-based
chiral magnets, the crystal packing is usually loose �a0
�10−9 m� and the exchange interaction is rather weak �J
�10 K�10−22 J�. On the other hand, in the case of the
inorganic chiral magnets, the crystal packing is close �a0
�10−10 m� and the exchange interaction is rather strong �J
�100 K�10−21 J�. We take these values as just typical pa-
rameter choices. The strength of the Dzyaloshinskii interac-
tion is ambiguous and we simply take q0=D /J=10−2.

A. Mass of the kink crystal

The mass M of the kink crystal is given by Eq. �34�.
Evaluation of the overlap integral K� is performed in Appen-
dix D and yields K�=��,0K0, where

K0 = 2�E���
K���

m

�

L

a0
. �38�

Therefore we have

M =
c0

2

2c1
�m

�
�2K0

2

�0

1

a0
2 . �39�

The factor 1 /a0
2 appears here after the mks units �meters� for

distances are recovered in Eq. �33�. The mass per unit area is
given by

Marea = narea � M =
c0

2

2c1
�m

�
�2K0

2

�0

1

a0
4 , �40�

which after simplification yields

Marea =
2E���
�0K���

�2L

Ja0
5 �

�2L

Ja0
5 .

The last relationship is reliable in the case of small fields,
i.e., �0�2, and K���=E����� /2.
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Noting that the period of kink measured in lattice units is
given by Eq. �3�, which turns into �kink=8K���E��� /�q0
�2�J /D for small fields, the mass per one kink acquires the
form

Mkink = Marea
�kink

L
�

J

D

�2

Ja0
4 . �41�

As a typical example of the molecular-based chiral magnets,
we have

Mkink � 10−9 g/cm2.

For the chain length L /a0=105, we have the total mass
Marea� D

J
L
a0

Mkink�10−4 g /cm2. As a typical example of the
inorganic chiral magnets, we have

Mkink � 10−6 g/cm2.

For the chain length L /a0=106, we have the total mass
Marea�10−2 g /cm2. This heavy mass should be compared
with the mass of conventional Bloch wall mass in ferromag-
nets. To make clear the difference, in Appendix E, we gave a
brief summary of this issue. In the present case, appearance
of the heavy mass is easily understood since the kink crystal
consists of a macroscopic array of large numbers of local
kinks.

B. Spin current

As it follows from Eq. �36� the physical dimension of the
spin current density is Wb m2 /s. Using the results of Appen-
dix D the spin current density given by Eq. �36� transforms
into

jx�x̄� = g	BS
c0

2c1

m

�

1

a0
Ẋ2

K0

�0
u0�x̄� . �42�

The factor 1 /a0 occurs after the mks units for distances are
recovered in the continuity equation �x→a0�x and in the ve-

locity Ẋ→ Ẋ /a0. After simplifications with aid of Eqs. �3�,
�20�, �25�, and �38� we immediately have

jx�x̄� =
g	B�

Ja0

4E���
�q0

1

�0
Ẋ2dn�x̄,�� . �43�

For the case of weak fields corresponding to small � this
yields

jx�x̄� �
g	B�

Ja0q0
Ẋ2dn�x̄,�� . �44�

We present a schematic view of an instant distribution of
spins in the current-carrying state in Fig. 5. In Fig. 6, we

present a snapshot of the position dependence of the current
density jx�x� in the weak-field limit given by Eq. �44�. In Fig.
6, we depicted the cases of the magnetic-field strengths

H̃ / H̃c=0.1, 0.5 and H̃ / H̃c�1. Although formula �44� is valid
only for the case of weak-field limit, qualitative features are
well demonstrated by just extrapolating the validity up to

H̃ / H̃c�1. As the field strength approaches the critical value,
the current density is more and more localized.

For both the typical molecular-based and inorganic chiral
magnets, we have

jx�x̄� � 0.1	BẊ2 � 10−24Ẋ2 Wb s.

Taking the velocity of order Ẋ�102 m /s we obtain finally

jx�x̄� � 10−20 Wb m2/s,

therefore the current through the unit area

jarea
x �x̄� = jx�x̄� � narea � 1 Wb/s.

C. Magnetic dipole moment

The magnetic-dipole moment �Eq. �37�	 induced by the
motion is given by

m�x̄� = − g	BS
c0

2c1

m

�

1

a0
Ẋ

K0

�0
u0�x̄� ,

i.e., the relationship jx=−mẊ holds. By the same manner as it
was made for the spin current we obtain in the case of the
small fields,

m�x̄� � −
g	B�

Ja0q0
Ẋdn�x̄,�� . �45�

Therefore, for both the molecular-based and inorganic chiral
magnets, we have

m�x̄� � 0.1	BẊ � 10	B, �46�

i.e., m�x̄� is of order 10−22 Wb m. The total magnetic mo-
ment of the chain is

mchain � −
g	B�

Ja0q0
Ẋ�

0

L̄
dn�x̄,��dx̄ = −

g	B�

Ja0q0
�QẊ . �47�

We here used the relations �dn�x̄ ,��dx̄=am�x̄ ,�� and
��0�x�+�	 /2=sin−1�sn�x̄ ,��	=am�x̄ ,�� that lead to

X

j x
x

FIG. 5. A schematic view of an instant distribution of spins in
the current-carrying state. This picture corresponds to the case of
intermediate field strength.

-4 -2 0 2 4

1

FIG. 6. A snapshot of the position dependence of the current
density jx�x̃�. jx�x̃� is scaled by its maximum jmax

x = jx�0�. We de-

picted the cases of the magnetic-field strengths H̃ / H̃c=0.1, 0.5 and

H̃ / H̃c�1.
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�
0

L̄
dn�x̄,��dx̄ =

1

2
��0�L̄� − �0�0�	 = �Q , �48�

where Q is a topological charge introduced in Eq. �35�.
Noting

Q = L/lkink =
�q0L

8K���E���a0
, �49�

we have the chain magnetization,

mchain � −
g	B�

2Ja0
� L

a0
�Ẋ .

The total moment per unit volume

mvol = mchain � narea � L2 � −
g	B�

2Ja0
� L

a0
�3

Ẋ .

As a typical example of the molecular-based chiral magnets,
we have

mvol � 10−11Ẋ � 10−9 Wb m.

As a typical example of the inorganic chiral magnets, we
have

mvol � 10−8Ẋ � 10−6 Wb m.

VI. DISCUSSIONS OF RELATED TOPICS

A. Background spin current problem:
SU(2) gauge-invariant formulation

Heurich et al.47 proposed that the external magnetic fields
generate dissipationless spin currents in the ground state of
systems with spiral magnetic order. Here, we comment on
the relevance of the present work to this issue. In our model,
the background spin current is given by

jbg = ��0�x̄�/� x̄ − q̄0 � dn�x̄� − 2E���/� , �50�

i.e., there arises the misfit of the kink crystal to the helimag-
netic modulation and consequently the current comes up. Be-
low we prove that this current exists on a link between two
sites but it causes no accumulation of magnon density
�“magnetic charge”� at the site due to continuity equation,
i.e., the current is not related to the magnon transport. This
supports reasonings of arguments by Schütz et al.48 that ap-
pearance of finite spin currents is direct manifestation of
quantum correlations in the system, and in the classical
ground state the spin currents vanish.

The background spin current problem is best described by
the SU�2� gauge-invariant formulation developed by Chan-
dra et al.49 By imposing the local SU�2� gauge invariance of
the theory, we obtain the fictitious SU�2� gauge fields a and
h that give the spin current J�S�=�Lg /�a and the spin density
S=�Lg /�h, respectively, where Lg is the gauge-invariant La-
grangian.

Following Chandra et al.,49 we use the SU�2� Schwinger
boson representation,

Si =
1

2
bi�

† ���bi�, �
�

bi�
† bi� = 2S �� = 1,2� , �51�

where �= ��x ,�y ,�z� are the Pauli matrices. In the path-
integral prescription, the partition function is represented as

Z =� Dbi�
† Dbi�D�i exp�− �

0

�

L���d�� , �52�

where the Lagrangian is given by

L��� = �
i

�bi�
† ��bi� + i�i�bi�

† bi� − 2S�	 + H�S�b†,b�	 ,

�53�

where H is Hamiltonian �1� written in terms of the
Schwinger bosons and � represents the imaginary time. The
Lagrange multiplier �i provides the local constraint. The lo-
cal SU�2� gauge transformation acting on the SU�2� doublet,
bi

+= �bi1
+ ,bi2

+ � is given by

bi�
+ = bi

+ĝi
−1, bi� = ĝibi, �54�

where

ĝi�t� = exp
−
i

2
�i�t� · �� . �55�

The SU�2� rotation ĝi gives the rotation of the spin vector,

Si� = exp�− �i · Î�Si � Si − �i � Si, �56�

where �Î	���= 	�� �	 ,� ,�=x ,y ,z� is the adjoint representa-
tion of the Lie algebra of the SO�3� group characterized by

�Î	 , Î�	= 	��Î�.
Rewriting the Lagrangian in the gauge-invariant form,

there appears a term

bi��
†�ĝi��gi

−1�bi�� = ie�i·Î���i · Si�, �57�

which leads to introducing the gauge field hi transformed as

hi → hi� = e�i·I�hi + �t�i� , �58�

where �= it. Introducing the gauge covariant time derivative,
Dt��t−h�, we have hi�=hi+Dt�i. The fictitious magnetic
field �t�i is induced by the time-dependent rotation of the
spin reference frame.

The exchange terms are regrouped in a gauge-invariant
form,

− J�

i,j�

Si · S j + D · �

i,j�

Si � S j

= − J�

i,j�

S j exp
− ��
xi

xj

a · dr� Îx�Si, �59�

where J=�J2+D2, xi represents the position of the ith site,
and the spin vector potential is introduced as ax= �D /J�êx,
ay =az=0, corresponding to model �1�. The form of Eq. �59�
indicates that the tangential phase angle �i can be gauged
away by the local rotation of the angle �D /J�Rxi around the x
axis. The gauge field a is transformed as
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ai → ai� = e�iI�a − �xi
�i� �60�

or ai�=a−�xi
�i via the gauge covariant space derivative

�xi
��xi

+a�. In addition to the physical gauge field,

�D /J�ex̂, there appears the fictitious gauge field, �xi
�i, in-

duced by the spatial rotation of the spin reference frame.
The variation of the partition function under a local gauge

transformation must be zero,

�Z =� Dbi�
† Dbi�D�̃i exp
−� Lg���d��

�� �Lg

�ai�
· �ai� +

�Lg

�hi�
· �hi��

= 0, �61�

where �ai�� =−�xi
��i, �hi�=�t��i. Consequently, one ob-

tains the conservation law,

�xi
��Lg/�ai�� − �t��Lg/�hi�� = 0. �62�

By definition ��Lg /�ai�� �ai�=a=Ji
�S� is the spin current, where

the gauge field is fixed by the Dzyaloshinskii vector. On the
other hand �Lg /�hi�=−hi, and we finally obtain the continu-
ity equation,

�xi
Ji

�S� + �tSi = 0, �63�

where Ji
�S�=Ji→i+1

�S� +Ji−1→i
�S� . In the explicit form, the spin cur-

rent from the site i to i+1 is given by

Ji→i+1
�S� = Jxi�Si � Si+1� + xi��D � Si+1� � Si	

= S2J sin��i+1 − �i − �0�êx.

For the long-period incommensurate structure �D /J�1� this
yields in the continuum limit,

Ji→i+1
�S� � JS2� ��

�x
−

D

J
�êx. �64�

The spin current from the site i−1 to the site i,

Ji−1→i
�S� = Jxi�Si � Si−1� − xi��D � Si� � Si−1	 ,

gives −Ji→i+1
�S� in the continuum limit and compensates Eq.

�64�. Thus, the spin current through the ith site causes no
accumulation of magnon density at the site, i.e., the current
is not transport one. The accumulation of magnon density
means that the local quantization axis is wobbling. This wob-
bling motion, however, contradicts the spontaneous symme-
try breaking in the ground state.

B. Spin supercurrent in 3He

The moving kink crystal belongs to a class of dynamical
systems out of equilibrium.15 In contrast to a class of equi-
librium macroscopic ordered state with a broken symme-
try �ordered magnets, liquid crystals, superfluids, and super-
conductors� an emerging steady state is supported by pump-
ing of energy. The coherent spin precession discovered in
superfluid 3He known as homogeneously precessing domains

�HPDs� is a striking example of the quantum state.14

The precession of magnetization �spin� occurs after the
magnetization is deflected by a finite angle by the rf field
from its equilibrium value. The Larmor precession spontane-
ously acquires a coherent phase throughout the whole
sample. This is equivalent to the appearance of a coherent
superfluid Bose condensate, i.e., HPD is the Bose condensate
of magnons. According to the analogy the deviation of the
spin projection from its equilibrium value in the precession
plays the role of the number density of magnons. In terms of
magnon condensation the precession can be viewed as the
off-diagonal long-range order for magnons, where the phase
of precession plays the role of the phase of the superfluid
order parameter, and the precession frequency plays the role
of chemical potential.

The remarkable property of the magnon Bose condensate
in 3He-B is that nonequilibrium precession has a fixed den-
sity of Bose condensate. The density cannot relax continu-
ously; a decay of the condensate occurs due to decreasing
volume of the superfluid part. This results in the formation of
two regions of precession; the domain with HPD is separated
by a phase boundary, where a precession frequency equals to
the Larmor frequency, from the domain with static equilib-
rium magnetization �nonprecessing domain �NPD�	. In the
absence of a continuous pumping, i.e., rf field, HPD remains
in the fully coherent Bose-condensate state, while the phase
boundary between HPD and NPD slowly moves up to de-
crease a volume of the Bose condensate.

We may suggest that in the total analogy with the super-
currents in 3He, i.e., spin currents transferred by the coherent
spin precession, the pumping of magnons in the kink crystal
�by ultrasound, for example� will cause an appearance of
homogeneously moving domains with ODLRO separated by
a phase boundary from the domain with a static soliton lat-
tice. Without an external flux of energy, the relaxation will
occur via gradual decrease in the volume of the superfluid
phase.

C. Experimental aspects

In realizing the bulk magnetic current proposed here, a
single crystal of chiral magnets serves as spintronics device.
The mechanism involves no spin-orbit coupling and the ef-
fect is not hindered by dephasing. Finally, we propose pos-
sible experimental methods to trigger off the spin current
considered here.

1. Spin torque mechanism and spin current amplification

The spin-polarized electric current can exert torque to fer-
romagnetic moments through direct transfer of spin angular
momentum.2 This effect, related with Aharonov-Stern effect7

for a classical motion of magnetic moment in an inhomoge-
neous magnetic field, is eligible to excite the sliding motion
of the kink crystal by injecting the spin-polarized current
�polarized electron beam� in the direction either perpendicu-
lar or oblique to the chiral axis. The spin current transported
by the soliton lattice may amplify the spin current of the
injected carriers.
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2. X-ray magnetic circular dichroism

To detect the magnetic-dipole moment dynamically in-
duced by the kink crystal motion, x-ray magnetic circular
dichroism �XMCD� may be used. Photon angular momentum
may be aligned either parallel or antiparallel to the direction
of the longitudinal net magnetization.

3. Ultrasound attenuation under the magnetic field

Further possibility to control and detect the spin current is
using a coupling between spins and chiral torsion. Fedorov et
al.50 first pointed out that under the external torsion, the mag-
netoelastic coupling of the form �Ri,Rj

gij��� �ui−u j�	 ·Si

�S j appears, where ui is the displacement of the magnetic
atom at a lattice point Ri. Then, the quantity dij =gij��
� �ui−u j�	 plays a role of an effective Dzyaloshinskii inter-
action. Ultrasound with the wavelength being adjusted to the
period of the kink crystal may resonantly modulate dij and
may exert the periodic torque on the kink crystal. Conse-
quently, the kinetic energy is supplied to the kink crystal and
the ultrasound attenuation may occur.51 Then, the attenuation
rate should change upon changing the applied magnetic-field
strength.

4. Time-of-flight technique

The most direct way of detecting the traveling magnon
density may be winding a sample by a pick-up coil and per-
forming the time-of-flight �TOF� experiment. Then, the coil
should detect a periodic signal induced by the magnetic cur-
rent.

5. Energy loss of the moving kink crystals

The moving kink crystal produces the time-varying vector
potential per kink,

A�r,t� =
	0

4�

m�x − Vt� � r

r3 , �65�

where V= Ẋ and r is the position vector with respect to the
kink center. Then, the magnitude of the induced azimuthal
electric field E around the chiral axis is given by

E���� = � �A�

�t
� �

3	0

4�

g	B�

Ja0q0
V2 �x

�x2 + �2�5/2 , �66�

where � is the radial coordinate. Then, in the metallic chiral
magnets, strong energy loss may occur due to the induced
eddy currents. This phenomenon is exactly analogous to a
well-known fact that a magnet moving through inside of the
metallic pipe feels strong friction. On the other hand, in the
insulating chiral magnets, there is no eddy current loss and
instead the polariton excitations are expected to occur.
Therefore, the frictional force acting on the moving crystal
can be strongly diminished in the insulating magnets.52

VII. CONCLUDING REMARKS

In this paper, we gave a detailed account of a mechanism
of possible longitudinal transport spin current in the chiral

helimagnet under transverse magnetic field. The most impor-
tant notion is that the “spin phase” directly comes up in the
observable effects through the soliton lattice formation. In
our mechanism, the current is carried by the moving mag-
netic kink crystal, where the linear momentum has a form
P=2�SQ+MẊ. The topological magnetic charge, SQ,
merely enters the equilibrium background momentum
2�SQ, while the collective translation of the kinks with the
velocity Ẋ gives the mass M. Among the Gaussian fluctua-
tions around the kink crystal state in the soliton sector the
longitudinal �along with the helical axis� � fluctuations play a
crucial role to determine the mass of kinks. Appearance of
the spin currents is a manifestation of ordering in nonequi-
librium state, i.e., dynamical off-diagonal long-range order.

We also stressed that if we took account of only the �
fluctuations, the spin current �Josephson current� would
cause no accumulation of magnon density and the current is
not transport one. The accumulation of magnon density
means that the local quantization axis is wobbling but this
contradicts the spontaneous symmetry breaking in the
ground state.

This mechanism is quite analogous to the Döring-Becker-
Kittel mechanism17–19 of the domain-wall motion, i.e., the
Galilean boost of the solitonic kink. In our case, the coherent
motion of the kink crystal is dynamically induced by spon-
taneous emergence of the demagnetization field. To describe
the kink crystal motion and resultant emergence of the de-
magnetization field, we revisited the Sutherland seminal
work38 and generalized it to the case of vectorial degrees of
freedom, i.e., not only the tangential � but also the longitu-
dinal � degrees of freedom are considered. To clarify the
physical meaning of the inertial mass, we used the canonical
formulation of the kink crystal motion. We showed that in
the case of molecular-based chiral magnets, the inertial mass
per kink amounts to Mkink�10−9 g /cm2 and the total mass
Marea�10−4 g /cm2. In the case of the inorganic chiral mag-
nets, Mkink�10−6 g /cm2 and the total mass Marea
�10−2 g /cm2. Furthermore, the magnetic-dipole moment
per kink, induced by the kink crystal motion, amounts to m

�0.1	BẊ�10	B. Appearance of the heavy mass is a conse-
quence of the fact that the kink crystal consists of a macro-
scopic array of large numbers of local kinks.

We here mention that in our scheme, the energy gap of the
� mode plays a role of “protector” of the rigid sliding motion
of the kink crystal. To excite the � mode, we need to supply
the energy via the external force. This situation is reminis-
cent of the existence of a threshold like Larmor frequency in
the superfluid 3He. To make clear the physical nature of the
edge velocity in our scheme is beyond the scope of the
present work. We leave this problem for future consideration.

Detection of these observable quantities may be quite a
promising challenge for experimentalists. Behind this issue,
there is an actively argued problem on how to make use of
the indirect couplings among the magnetic, electronic, and
elastic degrees of freedom. For example, magnetic-field-
dependent ultrasonic attenuation may give us new insights.
To materialize the theoretical model presented here,
symmetry-adapted material synthesis would be required. So
far, a category of materials suitable for chiral magnets has
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been successfully fabricated on purpose for application in the
field of both molecule-based and inorganic magnetic materi-
als. The interplay of crystallographic and magnetic chirality
plays a key role there. The materials of this category are not
only of keen scientific interest, but they may also open a
possible window for device synthesis and fabrication in spin-
tronics.
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APPENDIX A: PERIODIC POTENTIAL
AND BLOCH THEOREM

We have Schrödinger equation,

−
d2u

dx̄2 + V�x̄�u =  u , �A1�

where the periodic potential has a period 2K,

V�x̄ + 2K� = V�x̄� , �A2�

and given explicitly by

V�x̄� = 6�2sn2�x̄� − �2 − 4 + 4q̄0dnx̄ . �A3�

According to Bloch theorem a class of bounded states is
given by

u�x̄� = eiQx̄
Q�x̄� ,

where 
Q�x̄� is a periodic function 
Q�x̄+2K�=
Q�x̄� and Q
is a Floquet index. It may be shown �see Ref. 53, for ex-
ample� that boundary points of bands are determined from

cos�2KQ� = ! 1,

which produces boundary points of Brillouin zones,

QBZ
�n� =

�

2K
n, n = ! 1, ! 2, ¯ .

Periodicity condition �A2� means that the potential may be
expanded into the Fourier series,

V�x̄� = �
Gn

VneiGnx̄,

where the reciprocal-lattice points are Gn=2�n / �2K� and n
is integer.

To find Fourier coefficients of the potential V�x̄� we use
Fourier series for dn�x̄� and sn2�x̄� functions,

dn�x̄� =
�

2K
+

�

K
�
n=1

�
cos��nx̄/K�

cosh��nK�/K�

and

sn2�x̄� =
K − E

K�2 − �
n=1

�
�2n

�2K2

cos��nx̄/K�
sinh��nK�/K�

.

Plugging these series into Eq. �A3� we obtain

V0 = 1 + ��2 − 6
E

K
+

2�

K
q̄0,

Vn = −
3�2

K2

n

sinh��nK�/K�
+

2�q̄0

K

1

cosh��nK�/K�
.

The zeroth-order component V0 determines a shift and may
be omitted, while the component Vn mixes the plane waves

with wave vectors k̃ and k̃�= k̃+�n /K,


k̃��V�x̄��k̃� = �
n

Vn�k̃�,k̃+Gn
= �

n

Vn�k̃�,k̃+�n/K.

Hence, a quasidegenerate perturbation theory built in the

subspace spanned by two states �k̃� and �k̃+Gn�,

�Ek
0 Vn

Vn
� E

k̃+Gn

0 � = 0, �A4�

yields bands,

E!�k̃� =
1

2
�E

k̃

0
+ E

k̃+Gn

0 � !��E
k̃

0
− E

k̃+Gn

0 �2

4
+ �Vn�2.

The gap between the states �−QBZ
�n�� and �−QBZ

�n� +Gn� is

2�Vn� = �−
6�2

K2

n

sinh��nK�/K�
+

4�q̄0

K

1

cosh��nK�/K�
� ,

and it falls rapidly to zero with increasing in n,

2�Vn� � exp�− �nK�/K� .

APPENDIX B: LAMÉ EQUATION

The basic properties of the Lamé equation are presented
here. We start with the Jacobi form which is defined by41

d2��̄�x�

dx2 = ���� + 1��2sn2�x,�� − �+2�1 + A�	��̄�x� ,

�B1�

where �=1 and A being a constant. The spectrum is labeled
by a complex parameter �̄ and given by

A�̄ =
1

�2dn2�̄ . �B2�

The solution of the Lamé equation is exactly given in the
conventional form,41

��̄�x� =
H�x − �̄�

"�x�
exZ��̄�, �B3�

where H, ", and Z are Jacobi’s eta, theta, and zeta functions,
respectively, with the elliptic modulus �. Now, we require
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Eq. �B3� to be a propagating Bloch wave, i.e., Z��̄� to be
pure imaginary. Recalling that the zeta function Z��̄� is sin-
gly periodic with the period 2K, we see that two segments
�K−2iK� ,K	 and �−2iK� ,0� for �̄ are sufficient to fully de-
scribe solution �B3�.

Because of the quasiperiodicity,

H�x + 2K − �̄� = − H�x − �̄�,"�x + 2K� = "�x� ,

we have

��̄�x + 2K� = − e2KZ��̄���̄�x� ,

and it is convenient to introduce the Floquet index,

Q̄��̄� =
�

2K
+ iZ��̄,k� .

Then, we have

��̄�x + 2K� = e−2KiQ̄��̄�x� ,

which is analogous to the Bloch theorem where 2K and Q̄
have the meanings of the lattice constant and the quasimo-
mentum, respectively. Furthermore, imposing the periodic
boundary condition,

��̄�x + L� = ��̄�x +
L

2K
2K� = �e−2KiQ̄	L/2K��̄�x�

= e−iLQ̄��̄�x� = ��̄�x� , �B4�

we have the quasimomentum as usual,

Q̄ =
2�

L
n ,

where n is integer.
Finally, we have the Bloch form,

��̄�x� =
H�x − �̄�

"�x�
e−iQ̄xei��/2K�x.

Other than the conventional parametrization, it is convenient
to work with a real parameter � related with �̄ by

�̄ = i� + K − iK� �B5�

for the acoustic branch and

�̄ = i� − iK� �B6�

for the optic one. Within the parametrization the eigenfunc-
tion for the acoustic mode transforms in the following way:

H�x − i� − K + iK��

= �1� �

2K
�x − x0 + iK�	�

= ie�K�/4Kei��/2K�x0e−i��/2K�x�4� �

2K
�x − x0	� ,

where x0= i�+K and �i �i=1,2 ,3 ,4� denote the theta func-
tions. Furthermore, we have

�3� �

2K
�x0 − iK�	� = e�K�/4Kei��/2K�x0�2� �

2K
x0�

and

H�x − �̄� = i

�3� �

2K
�x0 − iK�	�

�2� �

2K
x0� e−i��/2K�x�4� �

2K
�x − x0	� ,

which yield

���x� = i

�3� �

2K
�x0 − iK�	�

�2� �

2K
x0�

�4� �

2K
�x − x0	�

�4� �

2K
x� e−iQ̄x.

�B7�

This is an alternative representation for solution �B3�,37 and
it is used in the paper. The case of the optic branch �x0
= i�� is considered by a similar way.

The transformation of the Floquet index for the acoustic
branch is carried out as follows. By noticing that

Z�i� + K − iK�� = Z�i�� + Z�K − iK�� − sn�i��dc�i��

= Z�i�� + i
KE� + K�E − KK�

K
− sn�i��dc�i��

= i
�

2K
− iZ��,k�� − i�

�

2KK�
,

where we used the Jacobi imaginary transformations and the
Legendre relation KE�+K�E−KK�=� /2. Therefore, we
have

Q̄��̄� = Q��� =
��

2KK�
+ Z��,��� .

The same transformation for the optic mode ��̄= i�− iK��
yields

Q��� =
��

2KK�
+ Z��,��� + dn��,���

cn��,���
sn��,���

. �B8�

By the same manner, the corresponding spectrum is param-
etrized as

Ā�̄ =
1

�2dn2�̄ = A� = �
��2

�2 sn2� �acoustic�

1

�2sn2�
�optic� . �

Now, we briefly review the origin of the band structure.38

In the limit �→1, the Lamé equation reduces to the
Schrödinger equation,

d2��x�
dx2 + E + U0 sech2��x� = 0,

where E=k2�1+A�−���+1� , U0=���+1�. The potential
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U�x� = − U0 sech2��x�

is modified by the Pöschl-Teller potential and for �=1, there
are one bound state and one perfectly transmitted �reflection-
less� scattering state.54 The band structure of the Lamé equa-
tion is understood as follows. In the limit of well separated
modified Pöschl-Teller potential, the � bound states give dis-
crete levels and the scattering states give broad continuum.
When the potentials form a lattice, the discrete level overlaps
and the energy band may be formed. Even after the band
formation, the gap between the bound level and the scatter-
ing continuum retains. Therefore, the resulting band is split
into the lower acoustic band and the upper optical band.

APPENDIX C: DIRAC’S CANONICAL FORMULATION
FOR THE SINGULAR LAGRANGIAN THEORY

The canonical momenta conjugate to the coordinates X̄�t�,
���t�, and ���t� are given by

p1 = �L/� q̇1 = c0�
�

K�q3�,

p2� = �L/� q̇2� = − c0�J� + �
�

M��q3�� ,

p3� = �L/� q̇3� = 0, �C1�

and we obtain a canonical Hamiltonian,

Hc = p1q̇1 + �
�

p2�q̇2� + �
�

p3�q̇� − L . �C2�

Lagrangian �28� itself gives rise to a set of primary con-
straints,


1
�1� = p1 − c0�

�

K�q3� � 0,


2�
�1� = p2� + c0�Jn + �

�

M��q3�� � 0,


3�
�1� = p3� � 0, �C3�

where the symbol �0 means “weakly zero,” i.e., 
i
�1� may

have nonvanishing canonical Poisson brackets with some ca-
nonical variables. Because of a lack of primary expressible
velocities the Hamiltonian with the imposed constraints,

H� = 
1
�1�q̇1 + �

�


2�
�1�q̇2� + �

�


3�
�1�q̇3� + c1V , �C4�

coincides with Hc, i.e., q̇1, q̇2�, and q̇3� �primary inexpress-
ible velocities� play the role of Lagrangian multipliers. Now,
the Hamiltonian H� governs the equations of motion of the
constrained system. The relevant nonzero Poisson brackets
are computed as

�
1
�1�,
3�

�1�� = − c0K�,

�
2�
�1�,
3�

�1�� = c0�
�

M��,

�
2�
�1�,V� = − 2c1��q2�,

�
3�
�1�,V� = − 2c1��q3�, �C5�

and �qi , pj�=�ij gives rise to the constraint conditions, 
̇1
�1�

= �
1
�1� ,H��=0, 
̇2�

�1�= �
2�
�1� ,H��=0, and 
̇3�

�1�= �
3�
�1� ,H��=0, or

in the explicit form,


̇1
�1� = c0�

�

K�q̇3� = 0, �C6�


̇2�
�1� = c0�

�

M��q3� − 2c1��q2� = 0, �C7�


̇3�
�1� = c0�K�q̇1 − �

�

M��q̇2�� − 2c1��q3� = 0. �C8�

Equation �C6� gives q̇3�=0 and then Eq. �C7� gives q2�=0.
Now, there arises the secondary constraints 
�

�2�=q2��0 to
be constant in time, 
̇�

�2�= �
�
�2� ,H��= q̇2�=0, and the consis-

tency condition is fulfilled. Finally Eq. �C8� relates q3�=��

to q̇1= Ẋ and produces Eq. �31�.

APPENDIX D: COMPUTATION OF K�

We compute

K� = 2�
0

L

dxdn�x,��u��x�

= 2N����
0

L

dxdn�x,��
�4
 �

2K
�x − x0��

�4� �

2K
x� e−iQx,

with x0= i�+K and where N��� is a normalization factor.

Noting that dn�x ,��
�4� �

2K
�x−x0�	

�4� �
2K

x�
has a period 2K, we perform

the Fourier decomposition,

dn�x,��
�4
 �

2K
�x − x0��

�4� �

2K
x� = �

l

�le
i��x/K�l,

where the coefficients are evaluated as

�l =
1

2K
�

−K

K

dxdn�x,��
�4
 �

2K
�x − x0��

�4� �

2K
x̃� e−i��x/K�l.

Then, we have

K� = 2N���L�
l

�l�Q,��/K�l.

Within the acoustic branch �0� �Q�� �
2K �, only Q=0 ��=0�

contributes to K�. Eventually, orthogonality condition �27�
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of a denumerable basis enforces that there is no contribution
of the term with l�0. By using ��=0�x�=� K���

LE���dn�x ,��,
therefore we have K�=��,0K0, where

K0 = 2� K���

E���L̄
�

0

L̄
dn2�x,��dx = 2�E���

K���
L̄ ,

where we exploited the relation E���=�0
K���dn2�x ,��dx.

APPENDIX E: INERTIAL MOTION
OF BLOCH WALL

We here discuss the relevance of the present formulation
to the Döring-Becker-Kittel mechanism.17–19 We consider a
conventional Bloch wall in ferromagnets, where the magne-
tization rotates through the plane of the wall. The wall size is
determined by the exchange energy cost and the anisotropy
energy that amount to

� =
�2JS2

Na0
2 + KNa0, �E1�

where N is the number of spins inside the wall. Minimizing
this energy leads to the wall size lBloch=��JS2 /Ka0, with K
denoting the anisotropy energy. Now, let us consider the
Bloch wall formed along the x axis and spins are confined to
the yz plane that winds 180°. Döring17 proposed that the
translation of the domain wall is driven by the appearance of
the local demagnetization field Hx inside the wall that vio-
lates the condition � ·M=0, i.e., Hx=−4��Mx−Mx���	, and
causes the precessional motion of the magnetization within
the yz plane. Then, the corresponding Larmor frequency
amounts to �L= �̇=�Hx, where � is a gyromagnetic ratio.
On the other hand, in the steady movement of the wall,
�̇=−��x��V, with V being the velocity, and consequently we
have

Hx = − �−1��x��V . �E2�

The excess of magnetization energy,

�W =
1

8�
�

−�

�

Hx
2dx =

V2

8��2�
−�

� � ��

�x
�2

dx ,

gives the energy stored in the moving wall. Taking the form
�W=MDoringV

2 /2 the inertial mass of the wall first proposed
by Döring17 is introduced,

MDoring =
1

4��2�
−�

� � ��

�x
�2

dx . �E3�

The explicit form ��� /�x�2 depends on kind of domain walls,
their orientation around crystallographic axes, for example,

MDoring =
1

4��2
�K/J ,

for 180° domain wall parallel to crystallographic plane
�100�. Taking into account that �=1.84�107 �Oe s�−1, this
yields in the case of Fe,

MDoring � 10−10 g/cm2.

From Eq. �E2� it stems that

Mx = −
1

4�
Hx =

1

4��
��x��V

provided Mx���=0. This equation should be compared with
Eq. �37� rewritten in the form

m�x̄� � −
g	B�

2Ja0q0
��x̄��Ẋ .

We see that m�x̄� may be interpreted as the demagnetization
field and physical Hamiltonian �33� may be regarded as the
energy cost associated with the demagnetization process.
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